Search results for "mass: scale"
showing 5 items of 5 documents
The strong coupling constant: State of the art and the decade ahead
2022
This document provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling $\alpha_s$. The current status of the seven methods presently used to determine $\alpha_s$ based on: (i) lattice QCD, (ii) hadronic $\tau$ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) e+e-, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses, are reviewed. Novel $\alpha_s$ determinations are discussed, as well as the averaging method used to obtain the PDG world-average value at the reference Z boson mass scale, $\…
Dy159 Electron-Capture: A New Candidate for Neutrino Mass Determination
2021
International audience; The ground state to ground state electron-capture Q value of Dy159 (3/2-) has been measured directly using the double Penning trap mass spectrometer JYFLTRAP. A value of 364.73(19) keV was obtained from a measurement of the cyclotron frequency ratio of the decay parent Dy159 and the decay daughter Tb159 ions using the novel phase-imaging ion-cyclotron resonance technique. The Q values for allowed Gamow-Teller transition to 5/2- and the third-forbidden unique transition to 11/2+ state with excitation energies of 363.5449(14) keV and 362.050(40) keV in Tb159 were determined to be 1.18(19) keV and 2.68(19) keV, respectively. The high-precision Q value of transition 3/2-…
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN
2019
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …
Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering
2021
Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the el…
Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay
2017
Neutrinoless double beta decay (0v\b{eta}\b{eta}) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research "beyond Standard Model" and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0v\b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extr…